QtBinder Documentation
Release 0.1.2

Enthought, Inc.

February 16, 2016

Contents

1 When do I use QtBinder over Traits UI? 3
2 Contents 5
2.1 CorePrinciples L e e 5
2.2 Traits UlIntegration o ittt e e e e e e 5
23 ToDO . . o e e e e e e e e e 7
24 APIReference i i i e e e e e e e e 8
3 Indices and tables 21
Python Module Index 23

QtBinder Documentation, Release 0.1.2

QtBinder thinly wraps Qt widgets with Traits.

The main goal of QtBinder is to provide a way to build Qt Uls with Traits models with an emphasis on transparency
and flexibility. The core is the Binder class that automatically wraps a Q0Ob ject and exposes its properties, signals,
and slots as traits. Subclasses of a particular Binder can add traits and methods to customize the widget and expose
useful patterns of communication between UI and model over the raw Qt APIL.

Binder widgets can be used inside a Traits UI View using a special Ttem called Bound. Binder widgets can be
bound to model traits using binding expressions.

Contents 1

QtBinder Documentation, Release 0.1.2

2 Contents

CHAPTER 1

When do | use QtBinder over Traits UlI?

The two major pain points of Traits UI are getting widgets laid out precisely the way you need them to and customizing
the behavior of editors in ways not intended by the original author. QtBinder addresses the layout problem by providing
access to all of the layout tools that raw Qt has. It is even possible to lay out widgets in Qt Designer and attach the
appropriate Binder to each widget.

Bound can be used to replace one normal Item in a Traits Ul View, or by using a hierarchical layout Binder, it
can replace some or all of what you would otherwise use normal Traits Ul Groups for layout. You can use as much
or as little of QtBinder as you need. It is easy to spot-fix the behavior of just one editor by replacing it with a Binder
and leave the rest of the View alone. You do not have to wait until QtBinder has replicated the functionality of all
Traits Ul editors before using it to solve smaller problems.

QtBinder Documentation, Release 0.1.2

4 Chapter 1. When do | use QtBinder over Traits UI?

CHAPTER 2

Contents

2.1 Core Principles

1. Value-added wrapping: Custom Binder classes should only manually wrap the Qt API when it adds value.
For example, translating Qt enums one-to-one to an ad hoc toolkit-neutral form does not add value. Binder
can automatically wrap all Qt properties, signals, and slots. This means that a user of the custom subclass can
access everything that the Qt widget exposes even if the author did not think to expose it. Value-added wrapping
encapsulates patterns of communication and coordinates multiple moving pieces internal to the widget to expose
a bindable Traits APL.

2. Thin, transparent wrapping: This is a library for using Qt to build Uls, not hide it behind a toolkit-neutral
abstraction.

3. Small core: The core should remain tiny so that it can be understood and traced through by users of QtBinder
who are debugging their code.

4. Graded transition from Traits UI: Bound is a straightforward Traits Ul Item that can be used wherever any
other ITtem could be used in Traits UL It can be used in a very focused manner to fix one or two places where
the extra flexibility of QtBinder is necessary and ignored elsewhere. It can also be used to provide the whole
View when desired. Use of QtBinder should not be held up because we have not added enough value-added
widgets yet.

5. Bind to existing instances: All Binder classes can either instantiate their underlying QWidget or be provided
an existing one. This allows us to lay out an entire Ul in Qt Designer, instantiate it from the . u1i file, then attach
the desired Binder to individual widgets inside of it.

6. Do one thing well: Custom Binder subclasses should attempt to encapsulate one particular pattern of using
their wrapped widget. It should not try to switch between different patterns based on configuration (unless if
the intended pattern requires that the widget switch behaviors live). The logic needed to synchronize the widget
state with the model state can sometimes get hairy. Dealing with multiple patterns conditionally complicates
this part of the code, which makes it harder to customize for new purposes.

7. Pay for what you use: Binder wraps all Qt signals, but it will only connect to them and incur the cost of
converting the signal values to Python objects when a Traits listener is attached to the signal trait.

2.2 Traits Ul Integration

The Bound class is a Traits UI Item that can be used to place a Binder widget into a Traits UI View and bind it to
traits on the model or Handler. It comes with its own Editor that knows how to set up the Binder and use it as
the control for the ITtem.

QtBinder Documentation, Release 0.1.2

The Bound constructor takes a Binder instance and some bindings. Bindings are either instances of Binding
subclasses or, more conveniently, specially-formatted strings that will be parsed to Binding subclass instances.

traits_view = View (
Bound (
HBoxLayout (
Label (id="label'),
LineEdit (id='edit', placeholderText=u'An integer'),
)
Factory('edit.validator', QtGui.QIntValidator),
'label.text << handler.label’',
'edit.text := object.text',
'spacing = 5",
)I
)

This example View succinctly demonstrates most of the Traits Ul features. The HBoxLayout is a Binder that
transparently wraps the QHBoxLayout Qt layout object. It is slightly customized with a constructor that lets you
declare the child widgets by passing Binder objects. Thus you can build most typical layouts using a hierarchy of
layout and widget Binder objects. Binder constructors can take an id keyword argument that sets a name for the
Binder that should be unique to the tree of Binder objects it is in. This name will be used to refer to that Binder
in the bindings that follow. Other traits that proxy Qt properties can also be set in the Binder constructor. They will
be assigned when the underlying QOb ject is assigned to the Binder.

Following the root Binder is a list of Binding strings or objects. These follow a pattern of ' binder_trait
<operator> model_trait_or_expression’. On the left of the operator is either the name of a trait on the
root Binder (e.g. spacing refers to the HBoxLayout . spacing property) or a dotted reference to a trait on a
descendant Binder that has provided an explicit id (e.g. edit.text refers to the LineEdit .text property).

On the right side of the operator is an expression evaluated in the Traits UI context. For a Binding that writes
back to the model (:=/Syncedwith and >>/PushedTo), this is restricted to a simple extended trait reference;
i.e. object.foo.bar but not object.foo.bar + 10. This context starts with the Traits Ul context (i.e.
has object and handler at a minimum) and is extended with any Binder in the tree with a non-empty id.
For <</PulledFrom, the expression will be parsed for extended trait references and the binding will be evaluated
whenever it changes. For example, format (handler.template, object.child.value) will re-evaluate
and assign to the left-hand side whenever handler.template OR object.child.value changes.

Note: Annoyingly, at the moment we cannot detect when such a dotted reference has a non-terminal non-
HasTraits object. In the example above, handler.template.format (object.child.value) would
cause an error because handler.template is a string, not a HasTraits object to which a listener can be at-
tached.

There are four operators that can be used in the string representations of Binding objects:

e =or SetOnceTo: Set a value once. This evaluates the right-hand side once when the binding is established.
No notifications will be sent afterwards.

e << or PulledFrom: Pull values from the model. This evaluates the right-hand side once when the binding is
established and whenever any traits used in the expression fire a change notification.

e >> or PushedTo: Push values from the Binder to the model. When the Binder trait on the left-hand side
changes, this will assign the new value to the attribute referenced on the right-hand side. No value is assigned
on initialization.

* :=or SyncedWith: A combination of PulledFrom and PushedTo to synchronize a binder trait with a
model trait. Because the right-hand side of PushedTo is restricted to plain attribute references, so is this.
Like PulledFrom, the right-hand side will be evaluated when the binding is established and assigned to the

6 Chapter 2. Contents

QtBinder Documentation, Release 0.1.2

left-hand side to initialize it.
And the last Binding cannot be put into string form:

* Factory: Call the provided function once when the binding is established, and set the value. No notifications
will be sent afterwards.

Bindings which initialize a value (i.e. SetOnceTol/=, PulledFrom/<<, SyncedWith/:=,and Factory) will be
evaluated in the order in which they are specified. This can be important for initializing some Qt objects. For example,
setting up validator properties before assigning the value.

Bound takes the following optional keyword arguments:

label [unicode] Like the normal Item label argument, except that if one is not provided, then
Bound will set show_label=False. Since the Bound Item is not exclusively associated with
any single trait like other Traits UI Items are, the default Traits UI behavior of using the trait name
as a label is not useful.

extra_context [dict] Any extra objects that should be added to the context used to evaluate the right-
hand-side of bindings.

configure [function with signature configure (binder, context)] A function to call after the
root Binder has been constructed and the bindings established but before display. It will be passed
the root Binder and the context dictionary. This can be used to do customizations using the raw
Qt API that may not be achievable using bindings alone.

stylesheet [unicode] A Qt stylesheet applied to the root control.

button_groups [dict naming ButtonGroup objects] Collect buttons in the Ul into named, bindable
groups that will be added to the context.

2.3 To Do

2.3.1 Short Term

¢ Demonstrate some fancier use cases that Traits Ul does not handle well, like double-ended sliders made in
Chaco (with histogram of a dataset being shown underneath).

¢ Bikeshed all the names.

2.3.2 Long Term

* Develop a reasonable story for the reverse wrapping: wrapping Traits object in the Qt item models API. Traits
UI's TabularAdapter is a reasonable start, but it misses a lot of opportunities to be ideal according to our
Core Principles.

» Have sufficient replacements for all common Traits Ul editors and the ways that we have hacked them. The
following are those that are sufficiently complicated that a configured raw widget Binder would not suffice
(or are not otherwise covered elsewhere here).

— TextEditor: we still need a LineEdit customization that converts specific Python objects (floats,
ints, whatevers) to/from strings and validates the same.

— EnumEditor: there are two distinct use cases, to select from a list of specific items or to allow write-in
values with some recommended choices. Keep those use cases separate.

2.3. To Do 7

http://doc.qt.io/qt-4.8/stylesheet.html
http://doc.qt.io/qt-4.8/model-view-programming.html

QtBinder Documentation, Release 0.1.2

— BoundsEditor: don’t reuse the implementation. Use (low, high) tuples for both the value and the
outer range. It’s easier to handle the events that way. Also, we want to be able to grab the middle of the
slider to move the whole range and not just each end independently. Keep it interface-compatible with the
Chaco double-ended slider.

— ColorEditor: design a nicer Ul than the current one.
— DateEditor
- TimeEditor
— DirectoryEditor
- FileEditor
— SetEditor
As you can see, it’s not that much.

¢ Inspect a Binder hierarchy and write it out as a Qt Designer . ui file so you can prototype the Binder using
the simple declarative syntax, then tweak it quickly to look excellent for production.

* Wrap QtQuick components. QML is going to be particularly good for heavily customized table widgets.

2.3.3 Un-goals

¢ Other toolkits.

* Constraint-based layout. It can be useful for some advanced use cases, but is largely unnecessary for almost
all of our use cases. It can be hard to debug without the right tooling (a la Apple), and the simple use cases
sometimes fail inscrutably. Of course, it can be added independently as a QLayout if needed.

2.4 API Reference

2.4.1 gt_binder.binder

class gt _binder.binder.Binder (*args, **traits)
Bases: traits.has traits.HasStrictTraits
Traited proxy for a QObject class.

The default proxy traits will be automatically assigned by inspecting the Qt class specified in the gclass class
attribute. Since this inspection process can be time consuming, compared to normal class construction, this will
only be done the first time the Binder class is instantiated.

For those traits that proxy a Qt Signal (or property that has a Signal), the Qt signal connection will only be
made once a Traits listener is attached to the proxy trait.

The gob j can only be assigned once in the Binder’ s lifetime.

gclass
The QObject class that is going to be wrapped by this class.

gobj = Instance(QtCore.QODbject)
The Qt object instance that is wrapped by the Binder instance.

loopback_guard = Instance(LoopbackGuard, args=())
The loopback guard.

8 Chapter 2. Contents

http://doc.qt.io/qt-4.8/qtquick.html
http://traits.readthedocs.org/en/latest/traits_api_reference/has_traits.html#traits.has_traits.HasStrictTraits

QtBinder Documentation, Release 0.1.2

id=Str()
An ID string, if any. It should be a valid Python identifier.

construct (*args, **kwds)
Default constructor that will automatically instantiate gclass.

configure ()
Do any configuration of the gob j that is needed.

dispose ()
Remove any connections and otherwise clean up for disposal.

This does not mark any Qt objects for deletion.

class gt _binder.binder.Composite (*args, **traits)
Bases: gt_binder.binder.Binder

Base class for Binders that hold other Binders as children.

Their QOb ject s may or may not have a similar parent-child relationship. The Composite is responsible for
constructing its children, configuring them, and disposing of them.

child_binders = Property(List(Instance(Binder)))
The child Binder instances. This will typically be a Property returning a list of Binders that are
attributes.

configure ()
Do any configuration of the gob j that is needed.

dispose ()
Remove any connections and otherwise clean up for disposal.

This does not mark any Qt objects for deletion.

class gt _binder.binder.NChildren (*args, **traits)
Bases: gt_binder.binder.Composite

Base class for Composite Binders that have arbitrary unnamed children.

child_binders = List(Instance(Binder))
Any children. It will be filtered for Binders.

class gt _binder.binder.QtTrait (*args, **metadata)
Bases: traits.trait_handlers.TraitType

Base class for Qt proxy traits on Binder classes.
Each subclass should override get () and set (). All Ot Trait subclasses are property-like traits.

If there is a Qt Signal that should be connected to to propagate notifications, assign it to the signal attribute.
The Qt Signal will only be connected to when a Traits listener is attached to this trait.

get (object, name)
Get the value of this trait.

set (object, name, value)
Set the value of this trait and notify listeners.

connect_signal (object, name)
Connect to the Qt signal, if any.

2.4. API Reference 9

http://traits.readthedocs.org/en/latest/traits_api_reference/trait_handlers.html#traits.trait_handlers.TraitType

QtBinder Documentation, Release 0.1.2

disconnect_signal (object, name)
Disconnect from the Qt signal, if any.

class gt _binder.binder.QtProperty (meta_prop, **metadata)

Bases: gt_binder.binder.QtTrait
Proxy trait for a Qt static property.
Pass in a QMetaProperty from the QMetaOb ject.

get (object, name)
Get the value of this trait.

set (object, name, value)
Set the value of this trait and notify listeners.

If there is a Qt Signal for this property, it will notify the listeners. If there is not one for this property,
this method will explicitly send a notification.

class gt _binder.binder.QtDynamicProperty (default_value=None, **metadata)

Bases: gt_binder.binder.QtTrait
A Qt dynamic property added to the QOb ject.

The dynamic property will be created on the QObject when it is added to the Binder. The default value
given to this trait will be the initial value. It should be an object that can be passed to QVariant.

Because most dynamic properties will be added this way to support Qt stylesheets, by default when the property
is assigned a new value, the QOb ject associated with the Binder (which should be a QWidget) will be
made to redraw itself in order to reevaluate the stylesheet rules with the new value. Turn this off by passing
styled=False to the constructor.

get (object, name)
Get the value of this trait.

set (object, name, value)
Set the value of this trait and notify listeners.

class gt _binder.binder.QtGetterSetter (getter_name, setter_name=None, **metadata)

Bases: gt_binder.binder.QtTrait
Proxy for a getter/setter pair of methods.

This is used for value () /setValue () pairs of methods that are frequently found in Qt, but which are not
bona fide Qt properties.

If the names follow this convention, you only need to pass the name of the getter method. Otherwise, pass both.

get (object, name)
Get the value of this trait.

set (object, name, value)
Set the value of this trait and notify listeners.

10

Chapter 2. Contents

QtBinder Documentation, Release 0.1.2

class gt _binder.binder.QtSlot (meta_method, **metadata)
Bases: gt_binder.binder.QtTrait

Proxy for a Qt slot method.

In general use, this trait will only be assigned to. If the slot takes no arguments, the value assigned is ignored.
If the slot takes one argument, the value assigned is passed to the slot. If the slot takes more than one argument,
the value assigned should be a tuple of the right size.

As a convenience, getting the value of this trait will return the slot method object itself to allow you to connect
to it using the normal Qt mechanism.

The constructor should be passed the QMet aMethod for this slot.

get (object, name)
Get the underlying method object.

set (object, name, value)
Set the value of this trait.

See Ot S1ot for details on how the value is processed.

class gt _binder.binder.QtSignal (meta_method, **metadata)
Bases: gt_binder.binder.QtSlot

Proxy for a Qt signal method.

In general use, this trait will only be listened to for events that are emitted internally from Qt. However, it can
be assigned values, with the same argument semantics as Ot S1ot. Like Ot S1ot, getting the value of this trait
will return the signal method object itself for you to connect to it using the normal Qt mechanism.

The constructor should be passed the OMet aMethod for this signal.

set (object, name, value)
Emit the signal with the given value.

See Ot S1ot for details on how the value is processed.

class gt_binder.binder.Default (value)
Bases: object

Specify a default value for an automatic QtTrait.

class gt _binder.binder.Rename (gt_name, default=<undefined>)
Bases: object

Specify that an automatic QtTrait be renamed.
Use at the class level of a Binder to rename the trait to something else.

For Ot Slot traits with multiple signatures, only the primary part of the name (without the mangled type
signature) needs to be given.

Since one cannot use both a Default and Rename at the same time, one can also specify the default value
here.

2.4. API Reference 11

http://docs.python.org/library/functions.html#object
http://docs.python.org/library/functions.html#object

QtBinder Documentation, Release 0.1.2

2.4.2 gqt_binder.binding

class gt _binder.binding.Binding (left, right)

Bases: object
Interface for a single binding pair.

classmethod parse (0bj)
Parse a binding expression into the right Binding subclass.

bind (binder, context)
Perform the binding and store the information needed to undo it.

unbind ()
Undo the binding.

class gt _binder.binding.SetOnceTo (left, right)

Bases: gt_binder.binding.Binding
Evaluate values once.
The right item of the pair is a string that will be evaluated in the Traits UI context once on initialization.

Mnemonic: binder_trait is set once to expression

class gt _binder.binding.Factory (left, right)

Bases: gt_binder.binding.Binding
Call the factory to initialize a value.

The right item of the pair is a callable that will be called once on initialization to provide a value for the
destination trait.

class gt _binder.binding.PulledFrom (left, right)

Bases: gt_binder.binding.Binding
Listen to traits in the context.

The right item of each pair is a string representing the extended trait to listen to. The first part of this string should
be a key into the Traits Ul context; e.g. to listen to the foo trait on the model object, use ' object.foo’.
When the foo trait on the model object fires a trait change notification, the Binder trait will be assigned. The
reverse is not true: see PushedTo and SyncediWith for that functionality.

Mnemonic: binder_trait is pulled from context_trait

class gt _binder.binding.PushedTo (left, right)

Bases: gt_binder.binding.Binding
Send trait updates from the Binder to the model.

The right item of each pair is a string representing the extended trait to assign the value to. The first part of
this string should be a key into the Traits UI context; e.g. to send to the foo trait on the model object, use
"object.foo’. When a change notification for binder_trait is fired, object . foo will be assigned
the sent object. The reverse is not true: see PulledFromand SyncedWith for that functionality.

Mnemonic: binder_trait is sent to context_trait

12

Chapter 2. Contents

http://docs.python.org/library/functions.html#object

QtBinder Documentation, Release 0.1.2

class gt _binder.binding.SyncedWith (left, right)
Bases: gt_binder.binding.PulledFrom, gt_binder.binding.PushedTo

Bidirectionally synchronize a Binder trait and a model trait.

The right item of each pair is a string representing the extended trait to synchronize the binder trait with. The
first part of this string should be a key into the Traits UI context; e.g. to synchronize with the foo trait on
the model object, use ' object.foo’. When a change notification for either trait is sent, the value will be
assigned to the other. See PulledFromand PushedTo for unidirectional synchronization.

Mnemonic: binder_trait is synced with context_trait

2.4.3 gt_binder.bound_editor

class gt_binder.bound_editor.Bound (binder, *bindings, **kwds)
Bases: traitsui.item.Item

Convenience Item for placing a Binder ina View.

class gt _binder.bound_editor.TraitsUI (item=None, **traits)
Bases: gt_binder.binder.Binder

Place a Traits UI Item into a Bound layout.

The automatically-added traits are only those for QWidget, not whatever widget the root control of the Ttem
may turn out to be. This Binder can only be used in the context of a Bound layout because it needs to be
specially recognized and initialized.

item = Instance(Item)
The Traits UI Item to display. Any label is ignored.

initialize_ item (ui)
Initialize the item using the Traits UI UT object.

244 gt_binder.raw_widgets

Mostly automated wrappers around all of the QWidgets and QLayouts provided in PySide.QtGui. Generally,
the Binder is named by dropping the leading Q. Only a few of these are minimally customized when it is necessary
to make them useful. Only those are documented here. The Qt API reference should be consulted for details of what
properties, signals, and slots are defined.

gt_binder.raw_widgets.binder_registry
The global TypeRegistry mapping PySide/PyQt types to their default Binder class.

class gt _binder.raw_widgets.ComboBox (*args, **traits)
Bases: gt_binder.binder.Composite

Customized to exposed the line-edit widget as a child Binder.

gclass

2.4. API Reference 13

http://pyside.github.io/docs/pyside/PySide/QtGui/index.html#module-PySide.QtGui
http://doc.qt.io/qt-4.8/qtgui-module.html

QtBinder Documentation, Release 0.1.2

lineEdit_class
alias of LineEdit

class gt _binder.raw_widgets.Layout (*children, **kwds)
Bases: gt_binder.binder.NChildren

Base class for all QLayouts.
gclass

construct ()
Build the QLayout.

class gt _binder.raw_widgets.BoxLayout (*children, **kwds)
Bases: gt_binder.raw_widgets.Layout

Base class for box layouts.
gclass

configure ()

class gt _binder.raw_widgets.VBoxLayout (*children, **kwds)
Bases: gt_binder.raw_widgets.BoxLayout

A vertical layout.

gclass

class gt _binder.raw_widgets.HBoxLayout (*children, **kwds)
Bases: gt_binder.raw_widgets.BoxLayout

A horizontal layout.

gclass

class gt _binder.raw_widgets.StackedLayout (*children, **kwds)
Bases: gt_binder.raw _widgets.Layout

A stacked layout.
gclass

configure ()

class gt _binder.raw_widgets.FormLayout (*rows, **traits)
Bases: gt_binder.raw_widgets.Layout

Children are (label, widget) pairs.

The label can be a unicode string or None. The last item can be a single Binder to take up the whole space.

gclass

14 Chapter 2. Contents

QtBinder Documentation, Release 0.1.2

child_binders = Property(List(Instance(Binder)))
The child Binder instances.

rows = List(Either(Tuple(Either(None, Unicode, Instance(Binder)), Instance(Binder)), Instance(Binder)))
The (label, widget) pairs.

configure ()

class gt _binder.raw_widgets.WithLayout (layout, **traits)
Bases: gt_binder.binder.Composite

A dumb QWidget wrapper with a child Layout.
This is needed in some places where a true QWidget is needed instead of a QLayout.
gclass

configure ()

class gt_binder.raw_widgets.Splitter (*children, **kwds)
Bases: gt_binder.binder.NChildren

A splitter widget for arbitrary numbers of children.
gclass

construct ()
Build the QLayout.

configure ()

class gt _binder.raw_widgets.ButtonGroup (*button_ids, **traits)
Bases: gt_binder.binder.Binder

A group of buttons.

This is a special Binder used in the but ton_groups= keyword to Bound. ButtonGroup is not a widget,
so it does not get put into the widget hierarchy. It is given the ID strings of the button Binders that belong to
the group.

gclass

button_ids = List(Either(Str, Tuple(Str, Int)))
List of Binder ID strings or (binder_id_str, gt_id_int)

add_buttons_from context (context)
Pull out the required buttons from the context and add them.

245 gt_binder.type_registry
class gt_binder.type_registry.TypeRegistry
Bases: object
Register objects for types.
Each type maintains a stack of registered objects that can be pushed and popped.

push (typ, obj)
Push an object onto the stack for the given type.

2.4. API Reference 15

http://docs.python.org/library/functions.html#object

QtBinder Documentation, Release 0.1.2

Parameters

* typ (type or ’__module__:__name__’ string for a type)— The type
the object corresponds to.

* obj (object) — The object to register.

push_abc (typ, obj)
Push an object onto the stack for the given ABC.

Parameters
* typ (abc.ABCMeta) — The ABC the object corresponds to.
* obj (object)— The object to register.

pop (1yp)
Pop a registered object for the given type.

Parameters typ (type or /__module _:__name ' string for a type) -
The type to look up.

Returns obj (object) — The last registered object for the type.
Raises
KeyError if the type is not registered.

lookup (instance)
Look up the registered object for the given instance.

Parameters instance (object)— An instance of a possibly registered type.

Returns obj (object) — The registered object for the type of the instance, one of the type’s su-
perclasses, or else one of the ABCs the type implements.

Raises
KeyError if the instance’s type has not been registered.

lookup_by_ type (fyp)
Look up the registered object for a type.

typ : type

Returns obj (object) — The registered object for the type, one of its superclasses, or else one of
the ABCs it implements.

Raises
KeyError if the type has not been registered.

lookup_all (instance)
Look up all the registered objects for the given instance.

Parameters instance (ob ject)— An instance of a possibly registered type.

Returns objs (list of objects) — The list of registered objects for the instance. If the given instance
is not registered, its superclasses are searched. If none of the superclasses are registered,
search the possible ABCs.

Raises
KeyError if the instance’s type has not been registered.

lookup_all_ by type (fyp)
Look up all the registered objects for a type.

16 Chapter 2. Contents

http://docs.python.org/library/functions.html#object
http://docs.python.org/library/abc.html#abc.ABCMeta
http://docs.python.org/library/functions.html#object
http://docs.python.org/library/functions.html#object
http://docs.python.org/library/functions.html#object

QtBinder Documentation, Release 0.1.2

typ [type] The type to look up.

Returns objs (list of objects) — The list of registered objects for the type. If the given type is not
registered, its superclasses are searched. If none of the superclasses are registered, search the
possible ABCs.

Raises

KeyError if the type has not been registered.

class gt _binder.type_registry.LazyRegistry
Bases: gt_binder.type registry.TypeRegistry

A type registry that will lazily import the registered objects.

Register °__module__:__name__’ strings for the lazily imported objects. These will only be imported when the
matching type is looked up. The module name must be a fully-qualified absolute name with all of the parent
packages specified.

lookup_by_ type (fyp)
Look up the registered object for a type.

2.4.6 gt_binder.widgets

Value-added wrappers for Qt widgets.

class gt _binder.widgets.TextField (*args, **traits)
Bases: gt_binder.raw_widgets.LineEdit

Simple customization of a LineEdit.

The widget can be configured to update the model on every text change or only when Enter is pressed (or focus
leaves). This emulates Traits Ul's TextEditor auto_set and enter_set configurations.

If a validator is set, invalid text will cause the background to be red.

value = Unicode(comparison_mode=NO_COMPARE)
The value to sync with the model.

mode = Enum(‘auto’, ‘enter’)
Whether the value updates on every keypress, or when Enter is pressed (or focusOut).

valid = QtDynamicProperty(True)
Whether or not the current value is valid, for the stylesheet.

configure ()

class gt _binder.widgets.EditableComboBox (*args, **traits)
Bases: gt_binder.raw_widgets.ComboBox

ComboBox with an editable text field.

We do not do bidirectional synchronization of the value with the model since that is typically not required for
these use cases.

lineEdit_class
alias of TextField

2.4. API Reference 17

QtBinder Documentation, Release 0.1.2

value = Any(Undefined, comparison_mode=NO_COMPARE)
The selected value.

values = List(Tuple(Any, Unicode))
(object, label) pairs.

same_as = Callable(operator.eq)
Function that is used to compare two objects in the values list for equality. Defaults to normal Python
equality.

configure ()

class gt _binder.widgets.EnumDropDown (*args, **traits)

Bases: gt_binder.raw_widgets.ComboBox
Select from a set of preloaded choices.

value = Any(Undefined, comparison_mode=NO_COMPARE)
The selected value.

values = List(Tuple(Any, Unicode))
(object, label) pairs.

same_as = Callable(operator.eq)
Function that is used to compare two objects in the values list for equality. Defaults to normal Python
equality.

class gt _binder.widgets.UIFile (filename, **traits)

Bases: gt_binder.binder.Composite
Load a layout from a Qt Designer . ui file.

Widgets and layouts with names that do not start with underscores will be added as traits to this Binder. The
binder_registry will be consulted to find the raw Binder to use for each widget. This can be overridden
for any named widget using the overrides trait.

gclass

filename = Str()
The .ui file with the layout.

overrides = Dict(Str, Instance(Binder))
Override binders for named widgets.

construct (*args, **kwds)

class gt _binder.widgets.BaseSlider (*args, **traits)

Bases: gt_binder.raw_widgets.Slider
Base class for the other sliders.
Mostly for interface-checking and common defaults.

value = Any(0)
The value to synch with the model.

range = Tuple(Any(0), Any(99))
The inclusive range.

18

Chapter 2. Contents

QtBinder Documentation, Release 0.1.2

gt_value = Rename(‘value’)
The underlying Qt value.

orientation = Default(<DocMock.Unknown>)

class gt _binder.widgets.IntSlider (*args, **traits)
Bases: gt_binder.widgets.BaseSlider

value = Int(0)
The value to synch with the model.

range = Tuple(Int(0), Int(99))
The inclusive range.

configure ()

class gt _binder.widgets.FloatSlider (*args, **traits)
Bases: gt_binder.widgets.BaseSlider

value = Float(0.0)
The value to synch with the model.

range = Tuple(Float(0.0), Float(1.0))
The inclusive range.

precision = Int(1000)
The number of steps in the range.

configure ()

class gt _binder.widgets.LogSlider (*args, **traits)
Bases: gt_binder.widgets.FloatSlider

range = Tuple(Float(0.01), Float(100.0))
The inclusive range.

class gt_binder.widgets.RangeSlider (*args, **traits)
Bases: gt_binder.binder.Composite

A slider with labels and a text entry field.

The root widget is a QWidget with a new property binder_class=RangeSlider. Stylesheets can refer-
ence it using the selector:

* [binder_class="RangeSlider"] {...}

This can be useful for styling the child QLabels and QLineEdit, for example to make a series of
RangeSliders align.

gclass

value = Any(0)
The value to synch with the model.

range = Tuple(Any(0), Any(99))
The inclusive range.

2.4. API Reference 19

QtBinder Documentation, Release 0.1.2

label_format_func = Callable(six.text_type)
The formatting function for the labels.

field format_func = Callable(six.text_type)
The formatting function for the text field. This is used only when the slider is setting the value.

field = Instance(TextField, args=())
The field widget.

slider = Instance(BaseSlider, factory=IntSlider, args=())
The slider widget.

construct ()

configure ()

20 Chapter 2. Contents

CHAPTER 3

Indices and tables

¢ genindex
* modindex

e search

21

QtBinder Documentation, Release 0.1.2

22 Chapter 3. Indices and tables

Python Module Index

q

gt_binder, 8

23

QtBinder Documentation, Release 0.1.2

24 Python Module Index

Index

A

add_buttons_from_context()
(qt_binder.raw_widgets.ButtonGroup method),
15

B

BaseSlider (class in qt_binder.widgets), 18

bind() (qt_binder.binding.Binding method), 12

Binder (class in qt_binder.binder), 8

binder_registry (in module qt_binder.raw_widgets), 13

Binding (class in qt_binder.binding), 12

Bound (class in qt_binder.bound_editor), 13

BoxLayout (class in qt_binder.raw_widgets), 14

button_ids (qt_binder.raw_widgets.ButtonGroup at-
tribute), 15

ButtonGroup (class in qt_binder.raw_widgets), 15

C

child_binders (qt_binder.binder.Composite attribute), 9

child_binders (qt_binder.binder.NChildren attribute), 9

child_binders (qt_binder.raw_widgets.FormLayout at-
tribute), 14

ComboBox (class in qt_binder.raw_widgets), 13

Composite (class in qt_binder.binder), 9

configure() (qt_binder.binder.Binder method), 9

configure() (qt_binder.binder.Composite method), 9

configure() (qt_binder.raw_widgets.BoxLayout method),
14

configure() (qt_binder.raw_widgets.FormLayout
method), 15

configure() (qt_binder.raw_widgets.Splitter method), 15

configure() (qt_binder.raw_widgets.StackedLayout
method), 14

configure() (qt_binder.raw_widgets. WithLayout method),
15

configure() (qt_binder.widgets.EditableComboBox
method), 18

configure() (qt_binder.widgets.FloatSlider method), 19

configure() (qt_binder.widgets.IntSlider method), 19

configure() (qt_binder.widgets.RangeSlider method), 20

configure() (qt_binder.widgets.TextField method), 17
connect_signal() (qt_binder.binder.QtTrait method), 9
construct() (qt_binder.binder.Binder method), 9
construct() (qt_binder.raw_widgets.Layout method), 14
construct() (qt_binder.raw_widgets.Splitter method), 15
construct() (qt_binder.widgets.RangeSlider method), 20
construct() (qt_binder.widgets.UIFile method), 18

D

Default (class in qt_binder.binder), 11

disconnect_signal() (qt_binder.binder.QtTrait method),
10

dispose() (qt_binder.binder.Binder method), 9

dispose() (qt_binder.binder.Composite method), 9

E

EditableComboBox (class in qt_binder.widgets), 17
EnumDropDown (class in qt_binder.widgets), 18

F

Factory (class in qt_binder.binding), 12

field (qt_binder.widgets.RangeSlider attribute), 20

field_format_func (qt_binder.widgets.RangeSlider
attribute), 20

filename (qt_binder.widgets.UlIFile attribute), 18

FloatSlider (class in qt_binder.widgets), 19

FormLayout (class in qt_binder.raw_widgets), 14

G

get() (qt_binder.binder.QtDynamicProperty method), 10
get() (qt_binder.binder.QtGetterSetter method), 10

get() (qt_binder.binder.QtProperty method), 10

get() (qt_binder.binder.QtSlot method), 11

get() (qt_binder.binder.QtTrait method), 9

H

HBoxLayout (class in qt_binder.raw_widgets), 14

id (qt_binder.binder.Binder attribute), 8

25

QtBinder Documentation, Release 0.1.2

initialize_item()
method), 13

IntSlider (class in qt_binder.widgets), 19

item (qt_binder.bound_editor.TraitsUI attribute), 13

L

label_format_func
attribute), 19

Layout (class in qt_binder.raw_widgets), 14

LazyRegistry (class in qt_binder.type_registry), 17

lineEdit_class (qt_binder.raw_widgets.ComboBox
attribute), 13

lineEdit_class (qt_binder.widgets.EditableComboBox at-
tribute), 17

LogSlider (class in qt_binder.widgets), 19

lookup() (qt_binder.type_registry. TypeRegistry method),
16

lookup_all() (qt_binder.type_registry. TypeRegistry
method), 16

(qt_binder.bound_editor. TraitsUI

(qt_binder.widgets.RangeSlider

lookup_all_by_type() (qt_binder.type_registry. TypeRegistry

method), 16

lookup_by_type() (qt_binder.type_registry.LazyRegistry
method), 17

lookup_by_type() (qt_binder.type_registry. TypeRegistry
method), 16

loopback_guard (qt_binder.binder.Binder attribute), 8

M

mode (qt_binder.widgets.TextField attribute), 17

N

NcChildren (class in qt_binder.binder), 9

O

orientation (qt_binder.widgets.BaseSlider attribute), 19
overrides (qt_binder.widgets.UIFile attribute), 18

P

parse() (qt_binder.binding.Binding class method), 12

pop() (qt_binder.type_registry. TypeRegistry method), 16

precision (qt_binder.widgets.FloatSlider attribute), 19

PulledFrom (class in qt_binder.binding), 12

push() (qt_binder.type_registry. TypeRegistry method), 15

push_abc() (qt_binder.type_registry. TypeRegistry
method), 16

PushedTo (class in qt_binder.binding), 12

Q

gclass (qt_binder.binder.Binder attribute), 8

qclass (qt_binder.raw_widgets.BoxLayout attribute), 14
gclass (qt_binder.raw_widgets.ButtonGroup attribute), 15
gclass (qt_binder.raw_widgets.ComboBox attribute), 13
gclass (qt_binder.raw_widgets.FormLayout attribute), 14

qgclass (qt_binder.raw_widgets.HBoxLayout attribute), 14

gclass (qt_binder.raw_widgets.Layout attribute), 14

gclass (qt_binder.raw_widgets.Splitter attribute), 15

qclass (qt_binder.raw_widgets.StackedLayout attribute),
14

gclass (qt_binder.raw_widgets.VBoxLayout attribute), 14

gclass (qt_binder.raw_widgets.WithLayout attribute), 15

gclass (qt_binder.widgets.RangeSlider attribute), 19

qgclass (qt_binder.widgets.UlFile attribute), 18

gobj (qt_binder.binder.Binder attribute), 8

qt_binder (module), 8

qt_value (qt_binder.widgets.BaseSlider attribute), 18

QtDynamicProperty (class in qt_binder.binder), 10

QtGetterSetter (class in qt_binder.binder), 10

QtProperty (class in qt_binder.binder), 10

QtSignal (class in qt_binder.binder), 11

QtSlot (class in qt_binder.binder), 10

QtTrait (class in qt_binder.binder), 9

R

range (qt_binder.widgets.BaseSlider attribute), 18
range (qt_binder.widgets.FloatSlider attribute), 19
range (qt_binder.widgets.IntSlider attribute), 19

range (qt_binder.widgets.LogSlider attribute), 19

range (qt_binder.widgets.RangeSlider attribute), 19
RangeSlider (class in qt_binder.widgets), 19

Rename (class in qt_binder.binder), 11

rows (qt_binder.raw_widgets.FormLayout attribute), 15

S

same_as (qt_binder.widgets.EditableComboBox at-

tribute), 18

same_as (qt_binder.widgets.EnumDropDown attribute),
18

set() (qt_binder.binder.QtDynamicProperty method), 10

set() (qt_binder.binder.QtGetterSetter method), 10

set() (qt_binder.binder.QtProperty method), 10

set() (qt_binder.binder.QtSignal method), 11

set() (qt_binder.binder.QtSlot method), 11

set() (qt_binder.binder.QtTrait method), 9

SetOnceTo (class in qt_binder.binding), 12

slider (qt_binder.widgets.RangeSlider attribute), 20

Splitter (class in qt_binder.raw_widgets), 15

StackedLayout (class in qt_binder.raw_widgets), 14

SyncedWith (class in qt_binder.binding), 13

T

TextField (class in qt_binder.widgets), 17
TraitsUI (class in qt_binder.bound_editor), 13
TypeRegistry (class in qt_binder.type_registry), 15

UlFile (class in qt_binder.widgets), 18

26

Index

QtBinder Documentation, Release 0.1.2

unbind() (qt_binder.binding.Binding method), 12

\Y

valid (qt_binder.widgets.TextField attribute), 17

value (qt_binder.widgets.BaseSlider attribute), 18

value (qt_binder.widgets.EditableComboBox attribute),
17

value (qt_binder.widgets.EnumDropDown attribute), 18

value (qt_binder.widgets.FloatSlider attribute), 19

value (qt_binder.widgets.IntSlider attribute), 19

value (qt_binder.widgets.RangeSlider attribute), 19

value (qt_binder.widgets.TextField attribute), 17

values (qt_binder.widgets.EditableComboBox attribute),
18

values (qt_binder.widgets.EnumDropDown attribute), 18

VBoxLayout (class in qt_binder.raw_widgets), 14

W

WithLayout (class in qt_binder.raw_widgets), 15

Index

27

	When do I use QtBinder over Traits UI?
	Contents
	Core Principles
	Traits UI Integration
	To Do
	API Reference

	Indices and tables
	Python Module Index

